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Designing complex group sequential survival trials

Edward Lakatos™

Forest Laboratories Inc, 909 Third Avenue, New York City, NY 10022-4731, U.S. A.

SUMMARY

This paper presents methodology for designing complex group sequential survival trials when the sur-
vival curves will be compared using the logrank statistic. The method can be applied to any treatment
and control survival curves as long as each hazard function can be approximated by a piecewise linear
function. The approach allows arbitrary accrual patterns and permits adjustment for varying rates of non-
compliance, drop-in and loss to follow-up. The calendar-time-information-time transformation is derived
under these complex assumptions. This permits the exploration of the operating characteristics of various
interim analysis plans, including sample size and power. By using the calendar-time-information-time
transformation, information fractions corresponding to desired calendar times can be determined. In
this way, the interim analyses can be scheduled in information time, assuring the desired power and
realization of the spending function, while the interim analyses will take place according to the desired
calendar schedule. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In designing a fixed-sample survival trial, there is a tension among potential endpoints, over-
all trial length, the relative lengths of the accrual and follow-up periods and sample size.
Assessing the impact of these factors on power is all the more difficult when the hazard
functions are non-linear and non-proportional, there is loss to follow-up or competing risks,
non-compliance and drop-in. If a group sequential design is indicated, the statistician must
additionally assess the impact of various interim monitoring plans, including potential bound-
aries, times of analyses, and whether the schedule for analyses will be based on the number
of events or calendar time.

This paper assumes the primary analyses for the group sequential survival trial will use the
logrank statistic. Over the last three decades, sample size methods for fixed sample survival
trials have been developed to adapt to a variety of conditions experienced in actual trials [1-5].
The most comprehensive of these methods are flexible enough to closely model any shape
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survival curves and non-proportional hazards, to adjust for rates of non-compliance, drop-in.
loss to follow-up and competing risk that may be expected to change as the trial progresses,
to model any pattern of recruitment, and to model treatment lag. For group sequential survival
trials, Kim and Tsiatis [6] developed an analytic approach for exponential models with uni-
form recruitment, but with no provision for the other factors. Some simulation approaches for
sample size calculations have been devcloped for group sequential trials [7, 8, 10]. Halpemn
and Brown [7] developed a program for arbitrary survival curves including a period of follow-
up after uniform accrual, but no adjustment for non-compliance. drop-in, or loss to competing
risks or follow-up. Scharfstein and Tsiatis [8] address the broader question of designing group
sequential trials when the interim analyses will be based on a unique parameter for which an
efficient estimator will be used. They recommend a simulation-based approach, which is par-
tially implemented in the commercial package EaST [9]. Gu and Lai [10] propose simulation
for power or sample size allowing input of survival curves of varying shapes. with adjustment
for non-compliance, drop-in and length of accrual. Several commercial software packages are
available for group sequential design and analysis; for a recent review. see Emerson [11]. In
contrast to these simulation programs which provide only sample size and power, the proposed
methods provide quantification of, and thus insight into, the operating characteristics for each
set of design specifications investigated. The calendar-time—information-time transformation is
particularly useful in this regard.

The proposed approach is to use non-stationary Markov models to project the survival
curves under the complex settings described above. These projections are then used to quan-
tify all parameters uscful in designing the group sequential trial. For example, the calendar-
time—information-time transformation is generated, and this can be used to determine what
the boundary will look like if, for example, interim analyses are planned every six months
during the trial. Alternately, if the interim analyses are scheduled to take place after fixed
numbers of events with equal increments of information. the transformation can be used to
predict the calendar time when such analyses will take place. The method additionally allows
exploring boundaries based on complex patterns of accruing data. The predicted values of
the boundaries can be calculated once the information-time-calendar-time transformation is
available. Finally, sample sizes for a variety of complex configurations are readily calculated
with little investment of computer time.

In Section 2, some background for group sequential designs is presented. For analysis, both
the logrank statistic and the Kaplan—-Meier [22] survival curves reparameterize all times rela-
tive to time from randomization. The Markov model is constructed similarly, with the initial
distribution representing time from randomization (time 0). In Section 3, the Markov model
for fixed sample designs is reviewed and then the model for the group sequential setting
is introduced. An cxample to be referenced throughout the paper is presented in Section 4.
Administrative censoring, which plays a key role in group sequential survival trials, is dis-
cussed in Section 5. How the model is used for calculating sample size and for projecting
the operating characteristics of the trial is found in Section 6. Scction 7 provides simulation
verification in a variety of situations, Section 8 treatment lag, and Section 9 the weighted lo-
grank statistic. This is followed by a concluding discussion in Section 10. An SAS IML [12]
computer program is available from the author.
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2. BACKGROUND FOR GROUP SEQUENTIAL METHODS

When group sequential designs are carried out, time can be viewed in several different ways.
The interrelationship of these measures of time in the survival setting is often complex,
but fundamental to successful design and implementation. The non-survival setting provides
a perspective useful in understanding the survival case. Assume that a trial will enrol, in
sequence, up to / sets of 2n patients each. Of the 2n patients in each set, n will be assigned at
random to each of groups A and B. For simplicity we assume that for each patient the endpoint
is measured at baseline, the patient is randomized, treatment is administered, and the final
assessment of the endpoint is made, and there is essentially no elapsed time between the
baseline and follow-up assessment. It is assumed that the change from baseline is normally
distributed with Xs ~ N(ua,0?) and Xg ~ N(up,0?). After the ith set of 2n patients has been
measured, the statistic

7 = Zi—:l (iAk —in)
' V(26%/ni)

is calculated and compared to the ith in a prespecified sequence b1, b,,...,b; called a boundary.
If Z; > b;, then the trial is stopped and the null hypothesis is rejected. Otherwise, the process
is continued with another set of 2n patients, If the null hypothesis is still not rejected after the
testing of the /th group, the trial is terminated and the difference declared non-significant. The
boundary is chosen so that under the null hypothesis, the cumulative probability of rejection
is the desired significance level.

In order to generalize this process for survival trials, the concept of ‘information time’ as
presented by Lan and Zucker [13] is now discussed. With the Lan and Zucker approach, a
single parameter is identified for monitoring efficacy, and information is defined as the recip-
rocal of the variance of the current estimate of this parameter. In the example just presented,
the information at the ith interim analysis is ni/2¢%. Increasing data results in increasing
precision, and, in turn, increasing information. The information fraction or information time,
defined as the ratio of the current information to the information were the trial to be carried
out without early termination, is particularly useful in implementing group sequential analyses.
In this simple example, the information fraction is the proportion (ni/2¢?)/(nl/26?)=i/I of
total patients currently enrolled, treated and measured, where i and / index the current and
final analyses. If the rate of enrolment is reasonably predictable, then the information fraction,
as a function of actual time (calendar time) is equally predictable.

The situation in most trials is more complex because the information contributed by an
individual patient is not usually available at the time the patient enrols. For survival trials,
information is given by

1 1\' 4
(E*E) (e + 1c) =

where d is the total deaths, and ng and nc are the numbers at risk in the experimental and
control groups [13]. Consequently, the information is proportional to the number of deaths. As
such, it is a complex function of the survival rate and pattern of accrual, as well as competing
risks and other factors that complicate the trial.
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Early group sequential methods required prespecification of a sequence of interim analysis
times and corresponding critical values for rejecting the null hypothesis and terminating the
trial. As in the above example, the times of the interim analyses were given as information
fractions, not calendar times. Such trials are referred to as ‘maximum information’ trials,
in contrast to ‘maximal duration’ trials in which the interim and final analyses are sched-
uled at calendar times. The Lan and DeMets [14] approach to group sequential monitoring
provides greatly improved flexibility, allowing, among other features, DSMB meetings and
interim analyses to be scheduled in calendar time rather than when prespecified numbers of
events happen. With the Lan—DeMets approach, one specifies an a-spending (or use) function
a*(u) from which the boundary may be calculated during the course of the trial. Suppose in-
terim analyses are performed at calendar times ¢,.f,,....4 and the corresponding information
fractions at these times are u,up,...,14;. Then %, =a"(u;) — o* (1;_;) is the a to be ‘used’ or
‘spent’ at the ith interim analysis, and the boundary can be derived using numerical integration
methods [16]. In designing such a trial, it is necessary to estimate the information fraction
u; corresponding to each given calendar time f,. The Markov model presented in Section 3
provides such a link.

3. THE MARKOV MODEL

Consider a survival trial in which patients are randomized to either a control or experimental
group. We begin by briefly reviewing the Markov model [3]; the extension to the group
sequential setting will follow. Each treatment group is modelled separately; without loss of
generality, only the model for the experimental group is presented here. Patients initially
randomized to the experimental group occupy the state 4g, which designates that the patient
is at risk at the experimental group rate. During the trial, patients can remain in Ag or transition
to one of three other states: A¢ for those who no longer comply with their treatment regimen
and are at risk at the control group rate; £ for patients who have the event of interest; or L
for patients who are lost to follow-up, lost to competing risks, or for patients whose time of
failure is censored because they are still at risk for the event of interest. Once the Markov
model is derived, only the at-risk states A; and Ac, and the event state £ will be used for
subsequent calculations. The loss state L is used to accumulate losses due to any possible
reason: loss to follow-up, competing risks, and administrative censoring are the most common.
Administrative censoring is discussed in Section 5. For this reason, except for administrative
censoring, probabilites from losses due to all other causes are combined and then entered in
the transition matrices. If loss rates from multiple sources are very high, additional states can
be added. Assume the time points &, ¢,....,ty equally divide the period of the trial where £ is
the time of randomization and ¢y is the end of the trial. Let @g(¢;) represent the distribution,
or vector (column) of occupancy probabilities for states L, E, Ag, Ac at time ¢,. The model is
given by

h

j=1

De(th) = ( 9}) * Ze(to) 2)
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where ‘x’ indicates matrix multiplication, and the 4 x 4 transition matrices J; are given by
L E Ag Ac
L 1 0 Doss, j Dloss,j
I = E 0 1 Deventg Pevente
A E 0 0 1-X Pdri, j
Ac 0 0 puon-comp; -2

Here, the first column and row are used to identify the states and are not part of the matrix,
and X is the sum of the three other entries in its column. The probabilities within the transition
matrix are probabilities conditional on being in the current state; the notation Pevent; 18 used
to distinguish from the cumulative probabilities pg. These transition probabilities come from
assumptions about the trial, which will be discussed in the example in the next section.

4. EXAMPLE

The Randomized Aldactone Evaluation Study [16] (RALES) was a double-blind placebo-
controlled trial designed to compare mortality under treatment with Aldactone to placebo in pa-
tients with congestive heart failure (CHF). In addition to this randomly assigned
therapy, all patients were given ACE inhibitors and diuretics. The SOLVD [17] and CON-
SENSUS [18] trials which established the efficacy of ACE inhibitors in conjunction with di-
uretics in CHF were used to provide rates for the control group, as well as compliance rates.
Table I provides conditional mortality rates calculated from published survival curves using
St tim1) = (S(t=1) — S(#))/S(#—) where S is the cumulative survival probability, that is,
S(t)=Pr(T 2t), where T is a non-negative random variable representing the lifetimes of in-
dividuals in some population. Throughout this paper, all units are in months; in applications,
any unit can be used. The second and third columns present cumulative mortality rates read
directly from published survival curves [17, 18]. Initially, cumulative rates were obtained for
each month, and for each month, the monthly conditional rates derived using the above for-
mula. The months were combined into the periods shown in the first column because the
patterns indicated similar monthly conditional rates within the periods. The monthly condi-
tional rates shown in columns four and five were then recalculated using the above formula
and an exponential assumption. For example, for CONSENSUS, for patients who have sur-
vived through the end of the sixth month, the probability of surviving to the end of the year
is §(1216) =1 —((1 — 0.28) — (1 —0.42))/(1 — 0.28) =0.80556. To find the hazard during the
period [7, 12], solve S(t)=e~* for 21216 = — log(S(12]6))/6 = 0.03604. The conditional prob-
ability of surviving for any one month period during this interval is exp(—12436) = 0.96460.
so the conditional monthly failure probability is 0.03540.

In both trials, the conditional mortality rates were much higher during the first three months
than during the remainder of the trial, casting doubt on the appropriateness of an exponential
model. The mortality rate among CHF patients can vary substantially depending on disease
severity, which was far greater in CONSENSUS than in SOLVD. The sixth column of Table I
is a linear combination of the conditional rates from SOLVD and CONSENSUS (in the case,
assuming 50 per cent from each trial), adjusted to take into account the disease severity
of the prospective cohort in RALES. The final column converts the monthly assumed rates,
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Table [. Mortality rates (per cent) from two trials of CHF.

Month Cumulative Conditional
Monthly Annualized
SOLVD CONS SOLVD CONS Assumed Assumed
3 5 19 1.70 6.70 4.035 39
6 7 28 1.01 3.86 2.478 26
12 12 42 0.92 3.54 2.369 25
24 22 60 1.01 3.05 2.154 23
36 3] 70 1.01 2.37 1.842 20
48 35 1.01 1.842 20

assuming an exponential model, into annualized rates, for the computer program. For example,
I — (1 -0.04035)'%=0.39.

To demonstrate the Markov model, first assume simultaneous entry and a five year trial;
staggered entry will be discussed in the next section. In the computer program, a common
time unit is used throughout for: length of trial; times of interim analyses; specifying the
recruitment pattern. Consequently, the term ‘month’ is nominal. and can be replaced easily by
any time unit. The user specifies how finely each time unit will be subdivided for the Markov
process. As in Lakatos [3, 4], assumptions regarding probabilities are given in annualized rates,
which are converted in the program to rates as appropriate for the specified interval length.
The annualized control group event rates in this example arc taken from the last column in
Table I; the experimental group rates are 77.5 per cent of the control group rates. For example
0.39 x (1 —0.225)=0.30222. In this example, each month is the smallest interval, so that the
program converts these two rates to 0.04035 and 0.02955 for building the transition matrix.
As follow-up for mortality is essentially complete in this type of trial, it is assumed here
that there is no loss to follow-up or competing risks. In other trials, where competing risks
and/or losses to follow-up are possible, a fifth ‘assumed’ column would contain the sum of
the probabilities of all such losses (see, for example, Lakatos [3]). Non-compliance is assumed
to have an annual rate of 10 per cent during the first year, and 5 per cent thereafter. Drop-in
is the phenomenon of patients randomized to control taking an active medication similar in
effect to the experimental therapy. This may happen, for example, if such patients see their
non-trial private physicians who diagnose the relevant condition and prescribe some active
therapy. Only the first 24 months are shown in Table II.

The distribution for the sixth month can be derived from the distribution at the fifth month
and the assumed transition probabilities using (2):

0 1 0 0 0 0
0.1369| 10 1 0.01858 0.02478| {0.1203
0.8190| {0 0 0.97268 0.00427| |0.8419
0.0441 0 0 0.00874 0.97095] [0.0378

With these assumptions, the entries in column E give the expected failure curve assuming
simultaneous entry.

Copyright © 2002 John Wiley & Sons, Lid. Statist. Med. 2002; 21:1969-1989
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Table 1. RALES example. Markov model for experimental group with simultaneous entry.

Month Assumed transition probabilities Distribution in states
(per cent monthly) at risk states
Prcomp Pdn Peveme Peventg Dloss Phait Dag Pac
L E Ae Ac
rand 0.874 0.427 4.035 2.955 0 0 1 0
1 0.874 0.427 4.035 2.955 0 0.0295 09617  0.0087
2 0.874 0.427 4.035 2.955 0 0.0583 0.9249 0.0168
3 0.874 0.427 2.478 1.858 0 0.0863  0.8896  0.0241
4 0.874 0.427 2.478 1.858 0 0.1034  0.8654  0.0312
5 0.874 0.427 2478 1.858 0 0.1203  0.8419  0.0378
6 0.874 0.427 2.369 1.779 0 0.1369  0.8190  0.0441
7 0.874 0.427 2.369 1.779 0 0.1525 0.7975 0.0500
8 0.874 0.427 2.369 1.779 0 0.1678 0.7766 0.0556
9 0.874 0.427 2.369 1.779 0 0.1830 0.7562 0.0608
10 0.874 0.427 2.369 1.779 0 0.1979  0.7364  0.0657
11 0.874 0.427 2.369 1.779 0 0.2125 0.7171 0.0703
12 0.874 0.427 2.369 1.779 0 0.2269  0.6984  0.0746
13 0.427 0.427 2.154 1.623 0 02399  0.6844  0.0757
14 0.427 0.427 2.154 1.623 0 0.2526 0.6707 0.0767
15 0.427 0.427 2.154 1.623 0 0.2652  0.6573  0.0775
16 0.427 0.427 2.154 1.623 0 0.2775  0.6442  0.0783
17 0.427 0.427 2.154 1.623 0 0.2896  0.6313  0.0791
18 0.427 0.427 2.154 1.623 0 03016  0.6187  0.0797
19 0.427 0.427 2.154 1.623 0 0.3133 0.6064 0.0803
20 0.427 0.427 2.154 1.623 0 0.3249  0.5943  0.0808
21 0.427 0.427 2.154 1.623 0 0.3363 0.5824 0.0813
22 0.427 0.427 2.154 1.623 0 0.3475 0.5709 0.0817
23 0.427 0.427 2.154 1.623 0 0.3585 0.5595  0.0820
24 0.427 0.427 2.154 1.623 0 0.3694  0.5484  0.0822

5. ADMINISTRATIVE CENSORING

Two types of censoring arc considercd. The first type is due to naturally occurring events that
are mostly out of the control of the trial administrators, such as competing risks. Censoring due
to competing risks occurs when, for example, we are interested in cardiac death, and the patient
first dies from cancer. The other type of censoring occurs because the trial administrators
may want to analyse the data before all patients die. If an analysis is performed before all
patients die, then the time of death for those still alive is censored; this type of censoring
is called ‘administrative censoring’. [n general. the later the analysis is performed. the less
the censoring. This censoring occurs as part of the administration of the trial, in contrast to
censoring by competing risks or loss to follow-up. Competing risks is a stochastic process
similar to the failure process for the primary endpoint, and assumptions about it for the
Markov model arc usually based on historical data for the target population. In contrast,
administrative censoring happens at a common calendar time point for all remaining patients,
and. consequently, the time from randomization to administrative censoring is a function of
the recruitment process.

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med 2002; 21:1969-1989
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Table III. Calculating probabilities of administrative censoring.

Recruitment
Calendar day May 1 +30 +60 +90  +120 +150 +180
Recruitment period j 1 2 3 4 5 6
Randomized 50 100 75 150 125 100 0

Probability of being randomized 0.083 0.167 0.125 0.250 0.208 0.167

Administrative censoring

Days from randomization 30° 60~ 90~ 1207 1507 180~
Administration censoring period m 1 2 3 4 5 6
Still at risk at interim analysis 600 500 375 225 150 50
Censored 100 125 150 75 100 50
Probability of being censoring 0.167 0250 0400 0.333  0.667 1.00

For group sequential trials, it is useful to think of latent survival curves, one for each
treatment group. At each successive interim analysis, one is able to estimate more of the
survival curves and with more data, but the underlying survival curves do not change. The
approach taken here is to use one survival model per group, but different models for adminis-
trative censoring — one corresponding to each interim analysis. In the Markov model. transition
probabilities are defined as functions of the time from entry rather than calendar time. The
logrank statistic and Kaplan—Meier curves are calculated in the same way. To preserve the
Markov assumption, the model assumes all patients are entered simultaneously, and staggered
entry is accounted for by administratively censoring patients in consonance with their accrual
pattern.

To understand the modelling of the recruitment/administrative censoring process, we begin
with an example. If an interim analysis is performed at 180 days after study start, then a
patient randomized at day 60 will have 120 days of follow-up at the time of the interim
analysis and thus be administratively censored at 120 days from randomization, provided no
other event occurs earlier. Similarly, a patient randomized at day 150 will be administratively
censored by this interim analysis at 30 days from randomization. If a second interim analysis
takes place at day 257, then the same two patients will be administratively censored at days
197 and 107, respectively, provided no other event has already occurred.

For specifying the recruitment process for this example, it is assumed that each month has
30 days with the first days of the months labelled as 0.30...., that all recruitment for a given
month takes place on the first day of that month, and that all administrative censoring for a
given month takes place just prior to the end of that month, labelled, for example, day 30~.
The recruitment process is specified in calendar time, as the trial planners expect it to take
place. Administrative censoring is in the time frame of the analysis and of the Markov model,
which is time from randomization.

A hypothetical recruitment process and the implied administrative censoring for a 180
day interim analysis is given in Table IIl. Here, study start is assumed to be 1 May. The
recruitment process is specified in the upper panel, and the monthly recruitment periods in
the second row of that panel. Similarly, the periods for administrative censoring appear in the
second row of the lower panel. Denote the recruitment period by j, and the administrative

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1969-1989



DESIGNING GROUP SEQUENTIAL TRIALS 1977

censoring period by m. Let #', i=1.2,....1, be the planned times of the interim analyses,
where ¢ is the time of the final analysis. Assume the trial is divided into &’ equal intervals or
periods at the time ¢' of the ith interim analysis The correspondence is given by j— ki —j+1
=m, where k' is the number of periods up to the ith interim analysis. For example, the 125
patients randomized in the fifth month from study start will be administratively censored in
the second month from randomization. As with Kaplan-Meier survival curves, all 600 patients
randomized during the six calendar months leading up to this interim analysis are at risk at
the time of randomization. The 100 patients recruited at the beginning of the sixth calendar
month will be censored at the end of the first month from randomization. Consequently, for
this interim analysis, the probability of being administratively censored at the end of the first
month is 100/600. The remainder of the lower panel of Table 1l is calculated similarly.

If n; is the number expected to be randomized during the jth period. then for this interim
analysis, the probability of entering during the jth period is

. . ki .
pi=n [ >on 3)

=
The probability of being administratively censored during the mth period is given by

i.
ai — pik‘—m-i-l (4)
—m+l
h=l  Pa
To include administrative censoring in the Markov model, patients in the at-risk states must
transition to the loss state. To accomplish this. define =) by

L E A]: AC

L 1 0 ap, a,

di=|E 0 1 0 0

Ag 0 0 1-4d, 0

Ac 0 0 0 | —a,
where a, is given by (4). Then the Markov model
h
_@E(l:[;,)z (Hg;*.;fj’) X_@E(I=0) (5)

j=1

patients from each of the two active states Ag and Ac into the loss state L. Note that for
the Markov model, all losses are combined into a single loss state — there is no need to
differentiate between the various reasons for loss, as only the at risk and event states are used
for subsequent calculations.

Although this recruitment pattern was not used in RALES, it is now applied to the Markov
model with other RALES assumptions to demonstrate administrative censoring for interim
analyses at months 6 and 13 of a 60 month trial. The 6 and 13 month interim analyses are
in the upper and lower panels of Table 1V, respectively. Here, peven, denotes the assumed
probability of failing by the end of the designated month, conditional on being at risk at the
beginning of that month.

where #=2,.... k" includes administrative censoring. The matrix .o// models transitions of
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Table IV. Modeling interim analyses at months 6 and 13, using recruitment from Table III.

Month Assumed transition probabilities Cens. Distribution in states

(per cent monthly)

aj Loss Fail At risk
ncomp dr()p—iﬂ Pevente Peventy L E A E 4 C

rand 0 0 1 0
1 0.874 0.427 4.035 2.955 0.167 0.1634 0.0283  0.8018  0.0071
2 0.874 0.427 4.035 2.955 0.250  0.3621 0.0508  0.5768  0.0103
3 0.874 0.427 4.035 2.955 0.400  0.5917 0.0666  0.3329  0.0088
4 0.874 0.427 2.478 1.858 0.333 0.7040  0.0724  0.2159  0.0076
S 0.874 0.427 2.478 1.858 0.667  0.8517 0.0759  0.0693  0.0031
6 0.874 0.427 2478 1.858 I 0.9230  0.0770  0.0000  0.0000

rand 0 0 1 0
1 0.874 0.427 4.035 2.955 0 0.0000  0.0296 09619  0.0086
2 0.874 0.427 4.035 2.955 0 0.0000  0.0584 09252  0.0l64
3 0.874 0.427 4.035 2,955 0 0.0000  0.0864 0.8900 0.0237
4 0.874 0.427 2.478 1.858 0.125  0.1125  0.1030  0.7577  0.0268
5 0.874 0.427 2.478 1.858 0.143 0.2228 0.1172  0.6321 0.0279
6 0.874 0.427 2.478 1.858 0.167 03311 0.1291  0.5126  0.0272
7 0.874 0.427 2.369 1.779 0.200 0.4373 0.1384 03996  0.0247
8 0.874 0.427 2.369 1.779 0.167 0.5073 0.1458  0.3241 0.0229
9 0.874 0.427 2.369 1.779 0.250 0.5933 0.1517  0.2362  0.0187
10 0.874 0.427 2.369 1.779 0.400 0.6939 0.1559  0.1380  0.0122
11 0.874 0.427 2.369 1.779 0333 0.7433  0.1584  0.08%6  0.0087
12 0.874 0.427 2.369 1.779 0.667 0.8082  0.1599  0.0288  0.0030
13 0.427 0.427 2.154 1.623 1 0.8397 0.1603  0.0000  0.0000

Extending the example to show an interim analysis at month 13, the recruitment is assumed
to extend to month 10 at the maximum monthly rate of 150 patients per month. This extension
will effect the recruitment pattern for the interim analysis at month 13, but not at month 6,

6. USING THE MODEL TO CALCULATE SAMPLE SIZE

The Markov model will be used to calculate the expected mean and variance of the logrank
statistic at each of the planned times of interim analyses. Since repeated numerical integration
with these expected means and variances will be used to derive the power relative to a
fixed sample size rather than applied to a sample size formula, the derivation is somewhat
different from that given in Lakatos [4]. We use the logrank statistic to test Hy: (1 —F)=(l—
G), where F and G are the failure-time distributions. The alternative under consideration is
Hi:(1 — F)#(1 — G). For the ith interim analysis. the weighted logrank statistic and its
variance can be expressed (see Schoenfeld [19]) as

P& i yi mji’
L, = Z] wi | X — (6)
1=

i fi
my; -+ n;
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and

”l II
Z( 7 (m) (M

where X; ! is 1 for the control group, 0 otherwise, the sum is over all deaths, w/ is a suitably
chosen welght and mj and n} are the numbers at risk just prior to the jth death in the
experimental and control groups, respectively. The logrank statistic is obtained by letting
w' =1.

If ¢; —m’/n is the ratio of patients at risk just before the jth event, and g is the ratio
of hazards just prior to the jth event, then the expectation of the logrank statlstlc and its
variance are approximately

igi i
E(L‘ )— ZW’ (1 +Jq;191 - lfjd)l) (8)
J
- i/
W)= Z(u T a7 )

Setting up the time intervals [2),%)...., [, 4] to coincide with those defined for the Markov
process, equation (8) can be rewritten as

K4 1, 0% iy

E(L, )—ZZW' /Y L (10)
i 1+ 6,0, 1+ by

where the first sum is over the &’ intervals at the ith interim analysis, and the second sum is

over the dj events of the Ath interval. By letting the length of the subintervals get small so
that ¢;; and 0j; can be assumed constant within each subinterval

E(L’;.)=d":2 PhWath
=1
where
= f’(zhe B 14(/324;" %
hh h A
Denote the cumulative probability of being allocated to the treatment group by Ok, and
the cumulative probability of failing in that group by the ith interim analysis by pk;. Then

E(d")=N(R(t'NQx pk, + Ocp:)). where R(t) is the proportion of patients recruited by the
ith interim analysis, and

and p;=

. : . : k’ . . .
E(Ly) = N(R(' ) Q¢ pr; + Qe p, ))}Z] PiWhTh (11)
Similarly
. . N . ki . . .
E(VS)=NR(' ) Qe pri + QcP'c.—))hZl Piwilh (12)
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where

i__ D
Ch= 7
(1+¢},)

At each interim analysis, the increment in the expected value of the logrank statistic is
E(LL,) — E(L;Y). If the weighting is independent of the recruitment process, then under the
null hypothesis, Tsiatis [20] showed that the increments of the expected value of the vari-
ance of these statistics are uncorrelated and thus given by E(¥) — E(¥J™!). Although this
independence does not necessarily hold under the alternative hypothesis, for local alterna-
tives, the independence assumption usually provides a reasonable basis for calculation (see
Kim and Tsiatis [6], for example). The validity of this assumption is checked is Section 7
using simulations. Included in the simulations are a broad range of alternatives, including
large departures from the local assumption as well as an extreme non-proportional hazards
example. With the assumption of independent increments, the power of these hypothesis tests
can be computed using numerical integration [15], where the increments for the integration
are distributed N(u,6%), i=1,...,1 with

W =EW) - EWL" (13)
a2 =E(V,) - E(V,) (14)
and
E(LY)=E(V3)=0
Substituting (11) into (13) gives (15). Note that the right hand side of (15) is completely

i , . AL
% = (RUWQePL + OcPENY vi
I=1

, . LK
— (RN QP + QcPéT_I,))g_:' W (15)

determined by the Markov model. A similar equation for the variance can be obtained by
substituting (12) into (14). Thus, while repeated numerical integration is needed to find N
corresponding to a prespecified power, the Markov model need only be evaluated once.

To use the RALES example, when the recruitment pattern is specified for the Markov model,
the sample size has yet to be determined. For instance, after a preliminary sample size calcu-
lation based on uniform patient entry, one may ask the medical monitor the expected rate of
enrolment. The response is usually in terms of patients, for example 50 patients the first month,
80 the next etc. These numbers reflect the relative rates of enrolment expected, but generally
will not add up to the sample size which has yet to be determined. The computer program
converts these to relative (recruitment probabilities) rather than absolute numbers. If there are
analyses at 6, 13 and 60 months, then after applying the methods just developed, the sample
size providing 90 per cent power is 582 per group, and the total deaths is 744. The number
of deaths expected at the 13 month interim analysis is then (0.1603 + 0.2080) x 582 =214.
(The 0.1603 is from Table IV, while 0.2080 is from the control group model which is not
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Table V. Expected monthly recruitment pattern.

From start of month 0 3 6 9 12 15 24
To just before month 3 6 9 12 15 24 60
Per cent expected monthly rate 10 20 40 60 80 100 0

Table VI. Projected operating characteristics of example trial.

Month Markov model Group sequential calculations
info frac % rert alpha boundary power num rert deaths

6 0.0087 5.9 0.00000 5.0000 0.00 73 6
12 0.0517 25.5 0.00000 5.0000 0.00 317 37
18 0.1588 60.8 0.00000 5.0000 0.03 756 114
24 0.3358 100 0.00036 3.3797 12.02 1244 240
30 0.5021 100 0.00284 2.7820 43.40 1244 359
36 0.6359 100 0.00699 2.5147 64.36 1244 455
42 0.7481 100 0.01173 2.3604 76.29 1244 535
48 0.8427 100 0.01638 2.2641 83.06 1244 603
54 0.9253 100 0.02080 2.1935 87.24 1244 662
60 1.000 100 0.02500 2.1387 90.00 1244 716

displayed.) Since only 50 per cent of the patients are expected to enrol by the sixth month,
the number of deaths expected is (0.077040.1029) x 291 =52. The information fractions (see
(1)) at months 6 and 13 are then 0.070 (=52/744) and 0.288 (=214/744).

Continuing with the RALES example, selected results of modelling interim analyses at six-
month intervals of a 60 month trial are recorded in Table VI; the assumed recruitment pattern
for this example is now changed to that shown in Table V, where randomization is at the
start of month 0.

With recruitment now extending beyond the times of the first interim analyses, the sample
size available at a given interim analysis must be based on the proportion of the total sample
size expected to be recruited by the time of that interim analysis. This is calculated by forming
the monthly cumulative totals to be recruited based on assumptions of the recruitment pattern,
and dividing all of these by the maximum (column 3).

The information fractions in column 2 are derived directly from the Markov model as in
the example just presented. The next steps in the procedure are to calculate the expected
boundary using the methods of Lan and DeMets. First a spending function is selected (the
one corresponding to the O'Brien—Fleming [21] boundary for this example). Evaluating this
spending function at cach of the information fractions gives the cumulative alpha projected
for cach of the interim analyses (column 4). The repeated numerical integration methods of
Armitage, MacPherson and Rowe (AMR) [15] are then used to calculate the boundary (column
5). In the derivation of this boundary, the null hypothesis is assumed, and the variance is the
information fraction. This gives the projected boundary z-values expected to be used at the
interim analyses.
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Table VII. Comparing the operating characteristics of example with three boundaries.

Month O’Brien—Fleming use fcn Pocock use fen Exact Pocock
Sample size = 1244 Sample size = 1401 Sample size =1511
alpha  bndry power alpha  bndry power bndry power alpha
6 0.00000 5.000 0.00 0.00037 3.380 0.15 2.619 1.5 0.0045
12 0.00000  5.000 0.00 0.00213 2915 2.67 2.619 64  0.0086
18 0.00000  5.000 0.03 0.00603 2.636 17.11 2.619 21.09 0.0124

24 0.00036  3.380 12.02 0.01139 2479 46.92 2.619 46.83 0.0157
30 0.00284 2.782 43.40 0.01555 2.460 66.38 2.619 6544 0.0183
36 0.00699 2.515 64.36 0.01846 2499 7638 2.619 7574 0.0203
42 0.01173  2.360 76.29 0.02066 2.477 82.23 2.619 81.85 0.0218
48 0.01638 2.264 83.06 0.02238 2.483 85.84 2619 8566 0.0231
54 0.02080 2.194 87.24 0.02379 2.487 8826 2.619 88.19 0.0241
60 0.02500 2.139 90.00 0.02500 2.488 90.00 2.619 90.00 0.0250

To calculate power, the numerical integration methods [15] are applied again, this time
using the boundary just derived under the null hypothesis, but using (13) to specify the
alternative. This projected quantification of the alternative, or Brownian drift, comes from
the Markov model which includes assumptions regarding the treatment effect. The projected
accumulating probability of exceeding the boundary, or power, is given in column 6. In order
to evaluate (13), a sample size N must be specified, but the sample size is unknown at this
point. A search for the desired sample size which gives the desired power is performed, with
the minimum value specified in the computer program being the fixed design sample size for
the logrank statistic. For the maximum sample size, the final boundary z-value (2.14 in the
example above) replaces the nominal significance level (typically 1.96) in the fixed design
sample size calculation for the logrank. A binary search between these two values is used to
find the sample size corresponding to the desired power. Since the group sequential sample
size may be smaller than the fixed design sample size in some non-proportional hazards
situations (see Section 7), the default minimum value for the search can be changed by the
user.

Table VII displays results of using different boundaries for the example in Table VI. The
boundary for the Pocock [23] use function is not constant here. Pocock’s original approach
had a boundary of constant z-values with interim analyses occurring at equal increments of
information. The Lan—DeMets use function corresponding to Pocock’s approach was intended
to provide an approximately constant boundary with equal increments of information. When
analyses are performed at unequal increments of information, the departure from constancy
can be quite large. The ‘exact Pocock’ boundary provides a constant boundary given the
projected information fractions. To achieve this, a constant boundary value is selected, and
numerical integration methods are applied, using the projected information fractions. If the
overall significance level is too high, a higher constant boundary value is selected and the pro-
cess repeated. Note that this approach bypasses the spending function; the increments of alpha
are never specified. The spending-function approach is not needed in the above procedure.
Any boundary that can be specified at the potentially unequal increments of information can
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Table VIII. Comparing sample sizes for logrank statistic,

IExponential Markov
Assumptions
Recruitment Uniform in 2 years As specified in Table V
Non-compliance 0.0 10% first year; 5% years 2-5
Drop-in 0.0 5% years 1-5
Loss-to-follow-up 0.0 0.0
pc 27% years 1-5 As specified in last column Table [.
PE (1 —0.225)pc (1 —0.225)pc
Calculated sample sizes
Fixed 743 1221
O’Brien—Fleming 783 1244
Pocock 911 1401

be used. Pocock’s specification is in terms of the constancy of the z-values, and does not in-
volve the increments of alpha. In the process of applying the methods of AMR, the increments
of alpha are produced (last column of Table VII), and these can be used to create a spending
function with the desired constancy if interim analyses are performed at the increments of in-
formation just used. To do this. plot the cumulative alphas against the cumulative increments
of information; to creatc a spending function, connect the nodes. either with straight lines or
smoothed curves. This procedure can be used with the O’Brien—-Fleming boundary as well
which requires constant z,/info frac, in contrast to the constant z in Pocock’s procedure. The
spending function produced will not be exactly as given in Lan and DeMets, which is derived
based on theoretical considerations of Brownian motion.

Table VIII compares sample sizes obtained using the Markov model versus the exponential
model. Both the original designers of RALES and the designers of a more recent trial of
carvedilol in CHF [24] assumed exponential models. The Markov model used the control
group piecewise exponential event rate as presented in the last column of Table I.

The original planners of RALES used 27 per cent, a combination of the first-year rates
of SOLVD and CONCENSUS, while the trial of carvedilol used 28 per cent [24]: 27 per
cent was used as the comparable yearly control-group failure rate for the exponential model.
The increase in sample size due to taking the interim analyses into account is considerably
larger for the Pocock boundary than the O'Brien-Fleming. In this example, the use of group-
specific piecewise exponcntial models when modelling survival, recruitment, non-compliance
and drop-in has a much larger impact on the sample sizes than does adjustment for the group
sequential factor.

7. SIMULATIONS
The performance of the proposed methods is investigated through simulations. First, a rather
extreme example of non-proportional hazards is examined. This is followed by a more routine

range of clinical trial assumptions in an exponential setting.
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Table IX. Sample sizes, simulated and calculated powers for example 2.

Sample size Power

Trial 1 Trial 2 Trial 1 Trial 2

Calculated Simulated Calculated Simulated

Fixed 608 838
O’Brien—Fleming 516 890 0.896 0.504 0.900 0.903
Pocock 430 1099 0.901 0.921 0.902 0.904

7.1. Example 2

Consider two hypothetical trials in which accrual takes place uniformly during the first year,
and interim analyses are planned every year of these five-year trials. The control group failure
rate is constant at 0.09 per year, while the treatment rate is non-constant in both trials. In
trial 1, the yearly treatment rate is 0.03 for each of the first two years and 0.08 for each of
the remaining three years. In trial 2, the yearly treatment rate is 0.08 for the first two years,
0.056 for year three, and 0.03 for each of the remaining two years. Table IX gives the results
of using the methods presented in this paper along with simulation verification.

The overall failure rates in the control group in both trials are identical, as are the treatment
group rates. Thus, the phenomenon giving rise to the different sample sizes relative to the
fixed design must be the non-proportionality of the hazards. Thus, where there is expected
non-proportionality, such non-proportionality is important not only in the sample size for the
fixed design, but also in determining the relative effect of the group sequential design. The
explanation for the sample size being smaller for the group sequential design as compared to
the fixed design is as follows. Events occurring during time intervals in which the hazards
are close together contribute to the variance, but little to the mean of the statistic, introducing
noise, but no signal. Consequently, in trial 1, where the hazards come together after early
separation, the logrank statistic is larger at the end of the period of large separation than at
the end of the trial. By reallocating some of the alpha to the early part of the trial. the group
sequential test takes advantage of the larger test statistic.

7.2. Additional simulations

The use of the Markov model for estimation of the mean and variance of the logrank statistic
has been verified extensively by simulation (Lakatos and Lan [31]). A wide range of exponen-
tial, proportional and non-proportional hazards were evaluated. The purpose of the simulations
in this section is to test the assumption of independent increments. Because the increments
arc independent under the null hypothesis (Tsiatis [20]). the focus of these simulations is to
test the robustness as the alternatives become less local. Exponential models are used because
the degree of departure from the null is easily quantified, and a non-proportional hazards
model whose most extreme hazard ratio is near one of the tested exponential models can be
considered at least as local.

The parameters for the simulation are defined as follows: each trial is 10 years long with
the number of years of accrual given in the table; Pc is the ten-year control group failure
rate; € is the hazard ratio. and accrual is given in years. Since Pc is a ten-year rate, and

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med 2002; 21:1969-1989



DESIGNING GROUP SEQUENTIAL TRIALS 1985

Table X. Evaluation of robustness of independent increments assumption.

Parameters Sample size Simulated power

Pc 0  Accrual Fixed Pocock O'Brien-Fleming Fixed Pocock O’Brien—Fleming

0.2 0.67 1 1614 1916 1664 90.2 89.9 90.3
0.2 0.67 5 2013 2390 2060 90.6 90.4 90.7
0.2 0.67 9 2715 3223 2718 90.3 90.3 90.4
0.2 0.50 1 636 755 655 90.1 90.3 90.2
0.2 0.50 5 795 943 819 90.7 90.5 90.7
0.2 0.50 9 1076 1277 1076 90.1 90.2 90.4
02 025 1 229 271 236 91.9 91.5 91.8
02 025 5 288 34 297 92.2 91.8 92.1
02 025 9 391 463 391 91.6 91.7 91.6
08 0.67 1 359 436 370 89.6 50.0 90.1
08 0.67 5 413 490 425 90.5 90.4 90.3
0.8 0.67 9 527 625 527 89.8 90.2 90.3
0.8 0.50 1 133 161 141 89.7 90.1 89.8
0.8 0.50 5 155 188 159 89.9 90.3 90.0
0.8 0.50 9 199 235 205 89.7 90.3 90.2
08 0.25 1 42 53 44 90.2 90.5 90.4
0.8 025 5 50 62 53 90.6 90.0 90.1
0.8 0.25 9 66 78 68 90.2 89.8 90.2

each trial is ten years long. the time unit is nominal. Only the unweighted logrank statistic
1s tested. The results presented in Table X demonstrate that the method gives good results
under a wide range of alternatives. Each power is based on 5000 simulated trials.

8. TREATMENT LAG

Lag in treatment effect refers to situations in which the full effect of treatment does not occur
immediately but increases gradually over a period of weeks, months or even years. The effect
of treatment lag on samplc size was investigated as far back as 1968 by Halperin er al. [1],
and later in the Markov model approach of Lakatos [3, 4]. One way to adjust sample size
for treatment lag is to modify the treatment group event rate over time. Specifically, if ¢ is
the full treatment effect. and /(¢) is the proportion of the treatment effect achieved by time ¢,
with /(0)=0 and /(1)=1, then

pe=(pl(t) + (1 = I(1))) pc

provides for the gradual onset of treatment effect in any desired pattern. Using this ad-
justed experimental group rate in the Markov model incorporates lag into the treatment effect,
while allowing further adjustment for the other factors. A limitation of this approach is that
non-compliers lose all benefit at the time of non-compliance, rather than following a morc
gradual offset mirroring the onset of efficacy. Similarly, control group patients who drop-in
are modelled as receiving the proportion of treatment effect /(fgop-in) at the time of drop-in,
rather than /(0). The lag Markov mode! of Lakatos [3. 4] does not have this problem. While
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the Markov model can be adapted to the group-sequential setting in exactly the same way as
was done for the non-lag model in this paper, the computer program for lag is not currently
available. However, use of the lag function /(¢) should provide a reasonable approximation.

9. WEIGHTED LOGRANK STATISTICS

When hazards are non-proportional. weighted versions of the logrank statistic can provide
increased power. Both Gehan [25] and Prentice [26] proposed weighted logrank statistics
that are generalizations of Wilcoxon's statistic for censored survival data. These place more
weight on earlier cvents; at each event, Gehan weights by the proportion of patients at risk
immediately prior to the event, while Prentice weights by the Kaplan-Meier estimate of
survival immediately prior to the event. Although either weighting is easy to achieve with
the Markov model, Gehan’s has some undesirable properties (see, for example Prentice and
Marek [27]); only Prentice’s will be considered here. The probability of surviving at any
given time in the experimental group is estimated by | — pg (see equation (2) and Table II),
so the probability pooled over the two treatment groups is estimated by 1 — (pg — pc)/2.
The Harrington and Fleming [28] class of weighted logrank statistics use w;=(1 — (pg —
pc)f2), 12920, so that y=1 gives the Wilcoxon statistic and y =0 the logrank. Sample
sizes for any member of this class are readily evaluated as an option in the computer program.
More complex weightings such as those proposed by Zucker and Lakatos [29] require the user
to provide IML code.

Referring to the RALES example, the sample sizes required for the fixed-sample design are
1221 for the unweighted logrank statistic and 1195 for the Wilcoxon. This is not surprising
since the hazard ratio diminishes as this trial progresses. In contrast, the group-scquential
sample size for the unweighted logrank is 1244 and 1249 for the Wilcoxon. This unexpected
reversal can be explained in part by examining the information-time—calendar-time transfor-
mation. Information accrues faster with the Wilcoxon, leaving relatively less alpha to be spent
in the last few interims. Since the last few analyses typically have a large impact on power,
having less alpha available towards the end decreases power. If the O'Brien—Fleming spending
function agy_p is replaced by o'~ = (atyp_i)'*/(0.025)%5, then the spending under «** with the
Wilcoxon is similar to the spending under ag,,_ with the logrank (see Table XI). With x*",
the sample size for the Wilcoxon is 1225.

In this example, the impact of such factors as non-compliance and varying hazard rates is
far more important than the choice of weightings of the logrank statistic (see Table VIII).

10. DISCUSSION

The importance of sample size and power calculations for clinical trials is well established.
as is the need to consider factors such as non-compliance, loss to competing risks or follow-
up. non-proportional hazards and the like. With group sequential designs, these factors are
equally important for sample size and power. From a broader perspective, the same factors
lead to important design considerations beyond sample size and power. In designing the
group sequential plan, the accrual of information is of fundamental importance. The RALES
trial, as originally designed, scheduled interim analyses to take place at 20, 40, 60, 80
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Table XI. Predicted spending of alpha.

Look Month Spending function
AOB-F AOp-F a’t
Logrank Wilcoxon Wilcoxon
1 6 0 0 0
2 12 0 0 0
3 18 0 0 0
4 24 0 0.001 0
5 30 0.003 0.005 0.003
6 36 0.007 0.010 0.007
7 42 0.012 0.015 0.012
8 48 0.016 0.019 0.016
9 54 0.021 0.022 0.021
10 60 0.025 0.025 0.025
Sample size 1244 1249 1225

and 100 per cent of planned total deaths. Using the calendar-time—information-time (CT-IT)
transformation, the calendar time of these analyses would have been 19, 26, 34, 45 and 60
months. The long hiatus during the very crucial late period of the trial raises ethical concerns,
and the irregular schedule is logistically difficult. However, there are advantages to planning
the trial on an information basis. The CT-IT transformation derived in this paper can be used
to design the trial on an information basis that satisfies ethical and logistic concerns. Further,
in Section 9, when unexpected results arose relating to sample sizes for the Wilcoxon statistic,
the CT-IT transformation revealed that the underlying cause was faster than anticipated accrual
of information. This suggested a revised spending function more appropriate for this rate of
accrual of information, solving the problem.

Simulations are uscful in verifying sample sizes. Simulations often require substantial com-
puting time, although this may become less of an issue as computing speed is rapidly in-
creasing. The simulation programs for group sequential designs can be quite complex and
should be verified independently. The simulation program by Gu and Lai [10] is much more
flexible than that of Halpern and Brown [7], but the current version appears to have an error
(Lakatos [30]).

The Markov model for fixed sample designs has been verified independently (see Lakatos
and Lan [31]), and appears to be quite accurate across a broad range of designs. For the fixed
design, the simulations verify the asymptotic formulae, as well as the discrete character of the
Markov model. Additional verification of the independent increments assumption is needed
in the group sequential case. A simple simulation program was written for this purpose, and
the results calculated using the Markov model were in reasonably agreement for exponential
models across a wide range of hazard ratios. The Markov model also agreed quite closely
when applied to the decidedly non-proportional hazards situation of example 2.

Using the SAS IML programs for designing group sequential trials can take considerably
more computing time (CPU) than the corresponding fixed-design sample size IML programs.
The times given below reflect the CPU times for the computer runs for this paper, for which
a Sun Ultra 450, which is quite fast, was used. In addition to the ten interim analysis trials,
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programs for the same trials with five interim analyses were run to establish CPU times for
more typical settings. The time required to run the Markov portion of the program, including
evaluating the fixed logrank sample size and calendar-time—information-time transformation
was always less than one seccond. The numerical integration portion requires substantially
more time, and this depends on the user-specified precision as well as the number of interim
analyses. Calculating the boundary usually took an additional 0.5 seconds (total about 1.3
seconds). Power calculations involve the most CPU time. Once the boundary is calculated,
the default starting sample size used for power calculations is immediately available from the
simple conservative approximation

2
Ziast + 21— )

Neps :Arﬁxed (
gpeed Zi_y2 218

where zj,q is the critical value at the last interim analysis, and « is the desired overall al-
pha. This approximation is usually quite good for the O 'Brien-Fleming boundary, and is a
reasonable way to explore sample size assumptions with slower computers. For precision of
+1/2 per cent (that is, 95 per cent confidence interval for power ~89.5-90.5), CPU times
ranged from 1.5 to 13 seconds. For this paper, precision was set so that all powers would be
90.00 (£0.000049), and computing times ranged from 6.2 to 27 seconds. CPU times could
increase substantially on slower computers, in which case, the strategy of using less precise
estimates (or the above formula) during the exploratory stage is recommended.
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