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SUMMARY

In certain long-term treatment trials, one expects some lag period before the treatment
is fully effective. This paper presents two weighted log rank type statistics designed to
have good efficiency over a wide range of lags: a maximin efficiency robust statistic and
a simplified version of this statistic. Both statistics can be computed as easily as the log
rank statistic. Asymptotic efficiency calculations, supported by small sample simulations,
show that the two proposed statistics are substantially more efficient than the conventional
log rank statistic in certain lag situations with comparatively little efficiency loss relative
to the log rank statistic when no lag exists. We recommend the maximin statistic for
situations where a lag is expected but cannot be specified precisely in advance.
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1. INTRODUCTION

It is well known that the log rank statistic is optimal for comparing survival curves
under proportional hazards alternatives. Some investigators have introduced statistics in
particular settings in which the proportional hazards assumption does not apply (Tarone
& Ware, 1977, Harrington & Fleming, 1982; Fleming, Harrington & O’Sullivan, 1987;
Mantel & Stablein, 1988).

The possibility of time lags in treatment effect has been noted by Halperin et al. (1968),
Wu, Fisher & Demets (1980), Gail (1985) and Lakatos (1986, 1988). They discussed
sample size calculation when such a lag was expected, assuming analysis would be by a
standard method not accounting for lag. Here we discuss alternative methods which do
account for lag.

Tarone & Ware (1977) describe a class of linear rank statistics in which the contribution
of each event to the total statistic is given a specified weight. The member of the class
is determined by the weighting method. The extreme members are the log rank statistic,
with equal weighting, and Gehan’s (1965) modified Wilcoxon statistic, with weighting
proportional to the population at risk just before failure. Harrington & Fleming’s (1982)
G"* class behaves analogously; for this class, the extremes are the log rank statistic and
Peto & Peto’s (1972) modified Wilcoxon statistic. Although these classes might seem a
good source for statistics which perform well under lag alternatives, such is not the case.
Lag alternatives require down-weighting of early events, but within these classes, the log
rank gives proportionately least weight to early events.

In the Women’s Health Trial (Self et al., 1988), the designers expected a linear lag as
described in § 2 below, and proposed a test statistic with corresponding linearly increasing
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weights. To our knowledge, the issue of time lags in analysis has not been discussed
elsewhere in the literature.

We present and motivate by maximin arguments two weighted log rank type statistics
which are designed to have good efficiency across a range of lag alternatives. Section 2
presents two prototypical time lag alternatives. Section 3 provides the setting and theoreti-
cal background. In § 4, we present the proposed statistics and discuss basic large sample
efficiency considerations. Section 5 gives numerical calculations for a particular example,
and §6 a variety of small sample simulation results. Section 7 contains an overall
discussion of the statistics and their properties. Our focus throughout is on one-sided
alternatives.

2. LAG MODELS

Let Ao(¢) and A,(t) denote the hazard functions for control and treatment, respectively.
The proportional hazards model postulates that A,(t) = ¢A(t) for some constant ¢ <1.
A general class of lag models may be described through the equation

M(1) =[l(0)+{1 = 1)} Ao(1),

where /() is a monotone function with 0 < /< 1, The value of /(#) represents the proportion
of the treatment effect achieved by time ¢; for example, /(¢) = 1 means that the treatment
has reached its full effect.

In this paper, we focus attention on the following two prototypical lag functions, where
I denotes an indicator function:

(a) Linear lag of length #*:
)=t/ T <t¥)+I(t> %),

The treatment effect increases linearly from 0 at time 0 to full effect at time r*.
(b) Threshold lag of length ¢*: I(t) = I(t> t*). The treatment has no detectable effect
during the period [0, t*]; afterwards, the treatment is fully effective.

The linear lag was described by Halperin et al. (1968). A prime example is cholesterol
lowering therapy to prevent coronary events. Here, because treatment typically is initiated
after 20 or more years of high cholesterol and associated plaque development, one expects
the therapy to reduce risk gradually over time rather than immediately upon initiation.
A linear lag was assumed in the sample size calculations for the Lipid Research Clinics
Coronary Primary Prevention Trial; the trial results indicate the presence of at least some
sort of lag phase (Lipid Research Clinics Program, 1979, 1984). The Women’s Health
Trial (Self et al., 1988) provides another example.

In the Physicians’ Health Study (Physicians’ Health Study Steering Committee, 1983),
the planned analysis for testing the effect of beta-carotene on cancer incidence is one
that is optimal under a threshold lag. Here, the investigators thought that treatment would
not affect pre-existing tumours but would prevent new tumour development. Because of
the time required for new tumours to become detectable, the investigators decided not
to count cancers occurring during the first two years after randomization.

The threshold lag is the limiting form for families of S-shaped lag functions, e.g.
logistic or probit lags.

The impact of a threshold lag on the efficiency of the log rank statistic is especially
evident. When there is a threshold lag, the log rank statistic suffers because the early
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period of no treatment difference makes zero contribution to the expected value of the
statistic but positive contribution to the variance.

The linear and threshold lag models cover a reasonable range of models for the lag
in treatment effect. The precise lag function is usually unknown. Indeed, it is often difficult
to specify even the duration of the lag.

3. BASIC SETTING AND THEORETICAL BACKGROUND

We work in the setting of a clinical trial with two groups: control, group 0, and
treatment, group 1. We assume a random censorship model. For simplicity, we assume
that each group has the same sample size n. Associated with individual j in group i is a
latent survival time 77 and a latent censoring time V; which are independent random
variables with distribution functions F, and G,, respectively. The 2n individuals in the
study are mutually independent. Also, F; is assumed to be absolutely continuous with
density f; and hazard A; =f;/(1 — F;). We adopt below the convention that all individuals
enter at f =0; staggered entry can be handled by re-expression in terms of censoring.

The data consist of

T:; mln (T,’, ii)a Du = I( V'u)
We define
m()=pr (T;=0)={1-F(O{1-Gi(1-)}, By(r)=I(T;=<1),

Ny(D=I(Ty<t, Dy=1), Y(z)—z I(T,=0, N(D=Y Nyt

The quantity Y;(¢) is the number at risk in group i at time t—, and N;(¢) is the number
of events in group i up to time . The total length of the trial, i.e. the follow-up period
for the individual followed longest, is denoted by 7. We assume F;(7)<1.

For testing the null hypothesis of equal survivorship H,: Fo= F,, a commonly con-
sidered class of statistics is the class of log rank type statistics having the stochastic
integral form

dNo(s)_'dN,(s)} 1)

Ty=n"" j W(s)H Yo(s) ™'+ YI<S>“}“{ Yols)  Yi(s)

where W is a weight function for which W(s) may depend on observations up to but
not including time s. A common alternative way of writing (1) is

Yo(Xi) }
Yo(Xi)+ Yi(Xi))’

TW= n_] Zk W(Xk){Sk—

where X is the kth ordered failure time among both groups pooled together and &, is
a 0—1 indicator of whether the failure is in group 0, e.g. Tarone & Ware (1977). Taking
W =1 gives the standard log rank statistic. The choice W(s)={Yo(s)+ Y.(s)}*/n with
y =0 gives Tarone & Ware’s (1977) family of tests, while the choice W(s)= S(s—)" with
v=0and S defined as the pooled-sample Kaplan-Meier survival function estimate gives
Harrington & Fleming’s (1982) family.

The asymptotic behaviour of statistics of the form (1) has been investigated extensively,
forexample by Aalen (1978) and Gill (1980), using the theory of martingales and stochastic
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integrals. This theory applies because, as indicated by Gill (1980, Corol. 3.1.1), the
processes

t
M;(t) = N;(t) —J‘ Xi(s)I(T;=5)ds
0

are square-integrable martingales with respect to the history {Z"} in which &/ is the
completion of the o-algebra generated by By(s), D;B;(s) and T;By(s) for s<t{, i=0,1
and j=1,...,n

In particular, suppose that {W'} is a sequence of weight functions satisfying the
following conditions.

Condition 1. W is { F}-predictable for each n.

Condition 2. W™ - W™ as n - co uniformly in probability on [0, 7] for some ‘regular’
deterministic function W, where a function is called ‘regular’ if it is left-continuous,
has right limits, and is of bounded variation.

Then, by Gill (1980, Corol. 4.3.1), under the null hypothesis Tw has an asymptotic
mean-zero normal distribution in the sense that for

Uzw(Ho) = jr { Wm(s)}z{ﬂ'n(s)-l + 771(5)_'}_1'\0(5) ds

one has vn{ Tw/ow(Hy)}~> N(0, 1) in distribution as n - 0. The variance ow(H,) may
be estimated consistently by

A2 -1 T 2 -1 -1 —1d(NO+Nl)(s)

ow(H,)=n .[o W (s Yo(s)™'+ Yi(s)" '} (Yo+ Y,)(5) .
Thus, one may test H, by referring Zy =+n{Tw/6w(Hy)} to the standard normal
distribution.

If W(s)=I(s> 1), then we denote U, = Zy. The statistic U, is obtained by computing
the log rank statistic for the data in (¢, ] only. In particular, U, is the usual log rank
statistic. The statistics U, play an important role below.

The efficiency properties of log rank type statistics have been investigated by Gill (1980,
§ 5.2) within the framework of local asymptotics, i.e. in the limit as n - co and the treatment
effect approaches zero at the rate 1/+/n. In particular, Gill (1980, eqn (5.2.15)) gives the
Pitman efficacy. Specializing this, one finds that for ‘regular’ deterministic W, the Pitman
efficacy of Zy under a lag model with lag I is

e(W; l)=”T W(s)(s)y(s) dS} /U W(s)¢(s) dS},

where ¢(s)={my(s) ™" +m,(s) "'} Ao(s), with 77, evaluated under H,. This is maximized
for W = I; compare Gill (1980, Lemma 5.2.1). If W, and W, are two ‘regular’ deterministic
functions, then the Pitman asymptotic relative efficiency of Zw, to Zy, when W, is optimal,
and of Zy, to Zy, when W, is optimal, is given by

pZ(zw.,zwz)=( J "W, Way ds) / (j Wiy ds)(r Wiy ds), 2)

where the argument s inside the integrals has been suppressed. This is equal to the
asymptotic correlation between Zy, and Zy, under H,; compare Gastwirth (1985).
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Suppose that W,, ..., W,,, are deterministic weight functions and form a matrix R
and a column vector ¢ by defining R,,=p(Zw,,Zw,) for pg=1,...,k and ¢,=
p(Zw,,,,Zw,) for q=1,...,k Then if a=(a,,..., a,)" is a vector of nonnegative

constants, the Pitman asymptotic relative efficiency of the statistic V= a,Zy,+... + a,.Zy,
relative to Zy,, when W,,, is optimal is equal to the square of the asymptotic null
correlation between V and Zy, , , which is given by

p*(V, Zw,,)=(c"a)’/(a"Ra). (3)

Suppose that W’ and W3" are data-dependent weight functions which satisfy Condi-
tions 1 and 2 for ‘regular’ deterministic functions W7 and W73, respectively. Then (2)
with Wi replaced by W} on the right-hand side gives the Pitman asymptotic relative
efficiency of W, when W7 is optimal, and of W, when WY is optimal. An analogous

statement holds for (3).
As a special case of (2), if ¢, <t,, then

Y(r) - ¥(1)
W(r)-¥(1)’

where ¥(t) =] (s) ds, with the integral over the range (0, #). This special case will be
used heavily in §§ 4 and 5.

PZ( Ul|9 U12)= (4)

4. PROPOSED TEST STATISTICS

If I is known, then W =1 is optimal. For / unknown, we have investigated two
approaches. One is to estimate the optimal W based on the data. This may be done
validly provided that Conditions 1 and 2 are satisfied; in particular, W(s) must not
involve data beyond the interval (0, s]. However, a preliminary investigation indicated
that for trials of realistic sample size, because of difficulties in achieving reasonable
precision in estimating the optimal weights, this approach would be unlikely to be fruitful.

The other approach is to specify a reasonable range of lags and use some linear
combination of the corresponding optimal Z,,’s as the test statistic. The idea is that such
a statistic could be hoped to have reasonable efficiency relative to the optimal Zy, across
the range of alternatives. This is the approach taken in this paper.

In particular, we suppose that the set of plausible models for the lag function consists
of the class £(1**) of functions which are monotone nondecreasing on [0, 1**] and equal
to one on (¢** 7]. In other words, the set of plausible lag models ranges from no lag to
a threshold lag of length +** for some t** <7 and includes all intermediate possibilities.

As our proposed test statistics, we consider (a) the maximin efficiency robust test for
the class Z(1**), to be denoted by V* (Gastwirth, 1966, 1985), and (b) an approximate
version of the maximin test, given by V, = (U,+ U,++). The maximin statistic is formulated
as follows. For any log rank type statistic V, we define the minimum asymptotic relative
efficiency of V as the minimum of p’(V, Z,) over all I€ £(+**). The maximin statistic
V* is that statistic, among all V, for which the minimum asymptotic relative efficiency
is as high as possible. In other words, among all V, the statistic V* minimizes the worst
possible efficiency loss, over all | € £(**), associated with using V instead of the optimal
statistic Z,.

As proved in Appendix 2, the maximin efficiency robust test V* is given by Z - with

Y(s) W(r**)

* E ok
W(s)={1—m} I(s<1t )+2{l— v ()

-4
} I(s> t**%), (5)
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As discussed in Appendix 2, V* may be viewed as the limit as k—co of the linear
combination statistic

o2k
Vi=Up+ Upet(1-p") ¥ U, (6)
j=1 -

where p’= p*(U,, Up) ={¥(7) —¥(+**)}/¥(7) and
=Y YN -p" ) (i=1,...,28 1) (7)

An important property of V* is that p(V*, U,) is constant over t € [0, t**].

The results in Appendix 1 imply that the minimum of p(V,, Z,) over all Ie Z(1*¥)
occurs for the threshold lag I(s) = I(s > t,,) with ¢,, given by (7). In addition, the minimum
of p(V*, Z,) over all [e L(1**) occurs for the threshold lags /(s)=I(s> 1) for 1< 1,
The corresponding minimum asymptotic relative efficiencies are

p*(Vo, U, )=2/(1+p7"), p*(V*, U)=2/(2-logp). (8)

These expressions allow one to quantify the worst possible performance of V, and V*,
in terms of asymptotic efficiency, over all lags in the class £L(#**).

A sense of how the log rank statistic U,, the statistic U,, and the statistics V¥ and V,
behave may be gained by looking at how they weight the different parts of the study. As
compared with the log rank statistic, the statistic U, places zero weight on [0, 7] and full
weight on (1, 7], whereas the statistics V* and V, place partial weight on [0, t**] and
full weight on (¢**, 7]. This reveals another advantage of using the proposed statistics
as compared with the Physicians’ Health Study approach of using U, for some f: the
proposed statistics provide some protection against concluding that treatment is beneficial
when there is actually an adverse effect during the hypothesized lag phase; the statistic
U, provides no such protection. This issue is discussed further in § 7.

Implementing V* and V, is straightforward. For V,, one calculates U, U;++, and

p=0{H,, W(s)=1(s> )}/ a{Hy; W(s)=1}.

The z-value for V, is then given by (U,+ U,)/{2(1+p)}""*. To implement V*, one
estimates ¥, based on pre-trial projections or based on the trial data themselves using
the formula

d(No+ N,)(s)

(Yot Y))(s) ®)

!
Y(r)=n"" J {Yo(s)™'+ Yi(s)"'}
0
ora smoothed version thereof, and substitutes the estimate into the formula (5) for W*.
Note that \I'(t) is obtained in the same way as ¢°(H,) for the log rank test, but counting
only the data in the interval [0, ¢]. Gill (1980, Lemma 4.3.1) shows that ‘P—>\I’ uniformly
in probability on [0, 7] as n - c0; it hence can be shown that substituting ¥ for ¥ does
not affect the asymptotic dlstnbutlon of V*, even though the estimated W* is not
predictable.

Unlike many common log rank type statistics, V* and V, are not linear rank statistics,
because the weight given to each event depends on the time of the event and not just on
its rank among all events. However, one may modify V* and V, to obtain linear rank
statistics by using (9) in V* and replacing ** with F~'(p**), where F is the pooled-sample
Kaplan-Meier survival time distribution function estimate and p**e(0,1) is an a priori
estimate of the maximum plausible lag length on the scale of cumulative event rate.
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5. NUMERICAL CALCULATIONS OF ASYMPTOTIC EFFICIENCY

To give a numerical flavour of the efficiency properties of the statistics U,, V, and V¥,
calculations are presented for the following example. A study is conducted to compare
treatment to control with respect to survival. The total trial period is = years. There is
uniform censoring over the interval [7,, 7] in both groups, with 7,=0-7+. In the control
group, survival is exponentially distributed with a 7-year mortality rate of 6 =50%. For
this example, the function  is given by

(1) :%A e_M[l —{(’ 1)/ (71— Tl)}l(’> )1,

where A =—7""log (1— ) is the control hazard rate.

Table 1 shows the asymptotic relative efficiency under each lag model across a range
of values for the true lag ¢* for (i) various U, statistics, (ii) the statistic V;, and (iii) the
statistic V*. These results were calculated using (2), (3) and (4), with numerical integration
where necessary. Table 2 shows the minimum efficiencies given by (8) for 8 =0-50, as
in Table 1, and also for 8 = 0-20. The results are fairly insensitive to 6.

Under the threshold lag model, the asymptotic relative efficiency of the log rank statistic
drops sharply as the lag ¢* increases. By contrast, for values of ** ranging up to 0-57,
the statistics V, and V* provide substantial gains in efficiency relative to the log rank

Table 1. Asymptotic relative efficiency of the U,, V, and V* statistics

Threshold lag Linear lag
Length of lag (¢*/7) Length of lag (¢*/7)

™/t 00 0-1 0-2 0-3 0-4 0-5 0-1 0-2 03 0-4 0-5
ARE 0:0  1-000 0-849 0-709 0-577 0-455 0-341 0-950 0-902 0-859 0-819 0-783
of 0-1 0849 1-000 0-834 0-680 0-536 0-401 0-945 0-972 0-948 0-915 0-880
U 02 0709 0-834 1-000 0-815 0-642 0-481 0-789 0.883 0935 0-937 0:920
03 0577 0-680 0-815 1-000 0-788 0-590 0-642 0-720 0-812 0-876 0-895
0-4  0-455 0-536 0-642 0-788 1-000 0-749 0-506 0-567 0-640 0-729 0:798
0-5  0-341 0-401 0-481 0-590 0-749 1-000 0-379 0-425 0-479 0-546 0-629
ARE 0-1 0961 0-961 0-802 0-653 0-515 0-385 0-986 0-974 0-940 0-901 0-865
of 02 0921 0914 0-921 0:750 0-591 0-443 0-942 0-969 0-973 0-952 0-924
Vo 0-3  0-880 0-866 0-865 0-880 0-693 0-519 0-896 0-919 0-949 0-963 0-952
0-4 0-837 0-816 0-806 0-8310 0-837 0-627 0-849 0-866 0-890 0-923 0-944
05 0792 0-763 0-744 0-737 0-749 0-792 0-798 0-810 0-827 0-853 0-889
ARE 01 0961 0-961 0-802 0653 0-515 0-385 0-987 0976 0-940 0-902 0-866
of 02 0921 0-921 0921 0750 0-591 0-443 0-946 0-974 0-977 0-955 0-926
v* 03 0879 0879 0:879 0-879 0-693 0-519 0-903 0-930 0-960 0-972 0-960
0-4  0-835 0-835 0-835 0-835 0-835 0-626 0-858 0-884 0-913 0-945 0-963
0-5 0788 0-788 0-788 0-788 0-788 0-788 0-810 0-834 0-861 0-891 0-927

Exponential control group survival with 7-year mortality of 6 =3,
Note that U, is the usual log rank test.

Table 2. Worst asymptotic relative efficiency of V, and V* statistics over the class £(t**)
Ratio +**/7
Statistic 0 0-1 0-2 03 0-4 0-5 0-6 0-7 0-8 0-9
Va 0-20 0-966 0-927 0-883 0-831 0-768 0-687 0-574  0-421 0-234
0-50 0-959 0914 0-864 0806 0737 0-652 0-537 0-38¢ 0-209
Vv* 0-20 0-967 0932 0-895 0854 0809 0-756 0687 0602 0-497

0-50 0-961 0921 0-879 0-835 0788 0-734 0-666 0-583  0-482
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statistic for various lags t* at comparatively little cost in terms of diminished efficiency
relative to the log rank statistic when no lag exists. For example, the proposed statistics
with £** = 0-27 are 30% more efficient than the log rank statistic when the true lag t* =0-27
but only 8% less efficient than the log rank statistic when there is no lag.

The asymptotic relative efficiency of the threshold statistic U, is highly sensitive to the
choice of the cutpoint . Thus, if one attempts to guess t* itself and uses the corresponding
U, statistic, one can be severely penalized if the guess is wrong. By using V; or V*
instead, and choosing a t** that exceeds all plausible 7*, this penalty may be circumvented.
Avoiding a ** that might underestimate the true lag is important because the asymptotic
relative efficiency of each of the proposed statistics decreases rapidly as * increases
beyond **, though not as rapidly as that of the log rank statistic.

Under the linear lag model, the statistics V, and V* provide an appreciable increase
in efficiency compared to the log rank test in the presence of a lag, although the increase
is not as large as under the threshold model. The loss in efficiency associated with using
V, or V* when there is no lag is roughly comparable to the gain in efficiency associated
with using V, or V* when there is a linear lag of length **. As t* increases beyond t**,
the asymptotic relative efficiency of each of the proposed statistics decreases; however,
the decrease is gradual. For t*> t** both V,; and V* have uniformly greater efficiency
than the log rank statistic.

Under both lag models, the difference in asymptotic relative efficiency between V, and
V* shown in Table 1 is fairly small, especially for **=<0-37. However, as illustrated by
Table 2, the difference between the two statistics becomes more pronounced for t**>0-5r.

6. SMALL SAMPLE SIMULATION RESULTS

The asymptotic relative efficiencies in § 5 describe the behaviour of the log rank, Vj,
and V* statistics in the limit as the sample size n approaches infinity and the treatment
effect approaches zero at the rate of 1/ v'n. We have done simulations to investigate how
well these results reflect small sample behaviour. All the simulations were run within the
setting of the example in § 5 and assuming that when the full effect of treatment is
achieved, the treatment hazard rate is 40% lower than the control rate.

The simulations examined the behaviour of the three statistics for t**=0-17, 0:27 and
0-47. For each value of t**, simulations were run for no lag, a linear lag with t* = r**,
and a threshold lag with * = r**. Using Lakatos’s (1988) procedure, the total trial size
was set so that the asymptotically locally optimal log rank type test, i.e. the statistic Z,
with [ equal to the true lag, would have approximately 80% power, with one-sided testing
at the a = 0-025 level.

Powers were computed based on 5000 simulations, yielding standard errors of about
0-007. The test based on V* was implemented using the estimate (9). The simulated
powers are approximate because the critical values used were based on the asymptotic
theory rather than on the exact finite sample null distribution of the test statistics. The
simulations were carried out using the efficient method of K. K. G. Lan and E. Lakatos’s,
given in an unpublished report, with the same simulated data used for all three statistics.
Also, a ‘predicted power’ for each statistic T was computed based on asymptotic relative
efficiency results in § 5 using ®{—z, +(z, +z3)p(T, Z;)}, where z,=1-96 and z; =0-84,
and ® is the standard normal distribution function.

Table 3 summarizes the results. There is excellent agreement between the ‘predicted
power’ and the simulated power.
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Table 3. A comparison of simulation-based estimated power with power predicted based on
asymptotic relative efficiency results

**  Sample Lag Log rank 1A v*
value size model Pred. Sim. Pred. Sim. Pred. Sim.
017 314 No lag 0-800 0-792 0-784 0-776 0-784  0-775
017 350 Linear 0-776 0-771 0-794 0792 0-794  0-792
0-17 372 Threshold 0-733 0-717 0-784 0-782 0-784  0-782
0-27 314 No lag 0-800 0-802 0-767 0-771 0-767 0-771
0-27 394 Linear 0-750 0-750 0-788 0-789 0-789 0-792
027 450 Threshold 0-655 0-626 0-767 0-752 0-767 0-750
0-47 314 No lag 0-800 0-803 0-727 0-720 0-726 0-720
0-47 512 Linear 0-699 0-685 (0-768 0-758 0-775 0-768
0-47 708 Threshold 0-472 0-423 0-727 0-720 0726  0-710

In addition, we carried out simulations under the null hypothesis of no treatment
effect, for a trial with a total sample size of 100, in order to check the Type I error level
of the proposed statistics. Based on 10 000 simulations, the following Type I error level
estimates were obtained for a test with a nominal one-sided level of a =0-025: 0-0257
for the log rank statistic, 0-0257 for the V, statistic, and 0-0256 for the V* statistic.

7. DISCUSSION

The popularity of the log rank test is warranted because (i) no modelling assumptions
are needed regarding the form of the survival distributions, and (ii) under proportional
hazards, the log rank statistic is optimal among the class of linear rank statistics. However,
when there is a lag in the treatment effect, the proportional hazards assumption is violated,
making the usual log rank test inefficient and a weighted version, which still avoids
modelling, more suitable. Although several authors have described various classes of
weighted log rank and related statistics, the problem of choosing weights for a lag situation
has not been systematically investigated previously.

Several approaches are possible. If one thinks the lag function is equal to some function
I, then one might consider the statistics Z,, as given by Self et al. (1988). When the true
lag is in fact [, then Z; provides the greatest efficiency among all weighted log rank type
statistics. However, because detailed a priori information about the lag is rarely available,
Z, may be a poor choice.

Another approach, taken in the Physicians’ Health Study, is to give positive weight
only to the portion of the trial during which one feels fairly certain that all or most of
the full treatment effect will be present. This approach has serious drawbacks. On the
one hand, an early adverse effect may be overlooked, leading to the conclusion that
treatment is beneficial when in fact it is not. On the other hand, there can be a severe
loss of efficiency due to misestimation of the lag length or to the discarding of a segment
of data in which a partial treatment effect exists.

We have introduced statistics V* and V, to provide good efficiency for a wide range
of lags and to avoid severe efficiency loss. Moreover, because they include all events,
there is less likelihood of concluding that treatment is beneficial when there is an early
adverse effect. Admittedly, because they downweight early events, there is some potential
for such misdirection. However, there is an unavoidable trade-off. We submit that the
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statistics V* and V, strike a better balance between enhancing efficiency and avoiding
misdirection than does the approach of completely ignoring the early data.

When there is little a priori knowledge regarding the lag and a substantial possibility
that the lag is close in form to a threshold lag function, we recommend the statistics V*
and V,. In terms of efficiency relative to the log rank statistic, they are greatly superior
under a threshold lag and substantially superior under a linear lag. Moreover, these gains
are realized with comparatively moderate efficiency loss when there is no lag. Some may
prefer V, because it is simpler and comparable to V* in efficiency unless the range of
possible lags is extremely broad. However, calculating V* with ¥ estimated by (9) is
straightforward and we therefore recommend this procedure.

When there are specific data or medical considerations bearing on the nature of the
lag function, clearly these should be taken into account in planning the statistical analysis.
If the class of plausible lag functions differs from the class ZL(r**), the statistics V, and
V* may not be appropriate. However, in this case, the ideas of this paper can be used
to construct and describe properties of a log rank type statistic adapted to the specified
class of plausible lag functions.

APPENDIX 1
Least favourable lag functions

THeoreM 1. For any deterministic ‘regular’ weight function W, the minimum of p*(Zw, Z;) over
all 1e L(t**) occurs for a threshold lag function.

Proof. Let W=0 be given. To show that p*(Zw, Z;) = min, p*(Zw, U,) for any 1€ L(1*), it
suffices to consider a step function I, because any ! can be approximated by a step function.
Suppose then that

l(t)=bﬂl(t>l())+"'+bm+ll(t>tm+|)q
where 0=1,<t,<...<lyn<l,s =t and b;=0, with by+...+b,,,=1. In this case, Z is

m

asymptotically equivalent to

A m+l m+1 3
(ﬁoU:,,'*' et B Ul,,,“) { Z Z BkBpP(U/,, U:,,)} s

i=0 p=0

where B; = b{¥(r)—¥(1;)}'/". Hence, by (3), p*(Zw, Z)) is equal to

[ soiw, ) /55 Baotwr. v

j=0 j=0 p=0
With B=(By+ ...+ B+ )2, the denominator is bounded above by B and the numerator is bounded
below by B min, p°(Zw, U,). The result follows. For ‘regular’ W, p*(Zyw, U,) is continuous in f,
so that the minimum is attained. a

APPENDIX 2

Statistics V, and V*

Gastwirth’s (1985) recipe for generating ‘candidates’ for the maximin efficiency robust test over
L(r**) leads to the following algorithm.

(a) Find all values of s<r** s,,...,s,, say, which minimize p(V,, U,).
(b) Define V,., as follows, with a’s, b’s and ¢’s chosen so that V., is equally correlated with
U, Ups, the U, , and the U, :

RLE r

Vie=ayUpt+a Uyt Z bleh"_ Z C,,U_\".
i=1

q=1
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THEOREM 2. (a) The Gastwirth recipe starting from V, leads to V, as defined in (6). Moreover,
p*(Vi, U,) is maximized for s=t; (j=0,...,2") and minimized for s =t,.,; with j odd, with
corresponding extreme values

l+p'/2‘ ] 4pl/zA
maX(k)=2+(2k_1)(1_[)./:*), mm(k)={m,—zt~)—z max (k);

(b) Vi is the maximin test for &, ={I: I(s) = I(s > 1;), some j},
(c) V* is the maximin test for L(t*¥).

Proof. An outline proof is given; details are available from the authors. We assume that y=1;
the case of general  can be reduced to this case by the time transformation ¢ =W¥(t). For
t, < 1, < t;, the following hold, the first for ¢y =1 and the second for any :

(@) p(U,, U)=(r=1)/(r—1)),

(ii) P(Un. s UrJ) = P(Urls Un;)p( UIZ, U:_,)-

For =1 we have

PZZPE(UO,U:*"):('T“’**)/'T, flcjz(l_P'ilzkrl)T (jzoa---,zk)-

Note that tk():O and lk2“ = t**.
We prove (a) by induction. For k=0, V,= Uy+ U,:« is given. Now note that

p(Ve, U)={2(1+p)} Hp(Us, U,) +p(U,+-, U))}
=201+ p)} H[{(r—s)/ TH+{(r— **)/ (7 — 5)}}]. (A1)

A simple calculus argument shows that this is maximized for s =0 and s = ** and minimized for
s = t;,; max (0) and min (0) are easily verified.

Assume now that k=m—1; we verify the result for k= m. By the result for the extrema of
p( Vo1, Uy), the s, involved in V,, are the t,,; for j odd. That is, V,, =X ;U,  for some vector
w, with j ranging from 0 to 2m. By (i), the correlation matrix R = R(m) of the U,  satisfies
R;;,=p" ", By (3), p(V,., U,,)=(Rw),/ (" Rw). The condition that all the p(V,, U, ) be
equal thus requires that Rw = ne, where e=(1...1)" and 7 is any constant. Straightforward
algebra shows that a solution is given by wo=w,» =1 and ;= (1—p'"*") for 1<j=<2"—1. This
verifies the expression for V,,,.

For s€[tn,, tnp+ ], from (3), (ii), the formula for R, and the geometric series formula, we find

(@ Rw)ip(V,, U)=p(U, ,U)+p(U, .. U).

mp? w,p+1 7

Arguing as with (A1) verifies the extrema of p(V,,, U,).

Regarding (b), Gastwirth (1966, p. 936) shows that the maximin test over %, is givenby X U, ,
where the vector ¢ is the solution to the following quadratic program: minimize ¢ R(k)c, subject
to R(k)e=1 and ¢=0. A Kuhn-Tucker argument (Luenberger, 1984, § 10.8) shows that the
solution is ¢ = R(k)™'e, which gives a statistic equivalent to V,.

Regarding (c), the main result, it is clear that for any & we have

e*=sup inf pAZy, Z)<sup inf p(Zy, Z)).
w e ) w levy
Because V, is the maximin test for %, the right-hand side equals min (k). By I’'Hdpital’s rule,
(1—p")/x—>—logp as x—>0. Using this one finds that min (k)—>2/(2—log p) as k—>00. Thus,
e*=<2/(2-log p). Under the assumption ¢ =1, formula (5) for W* becomes

WH(s)=(1=5/7)""I(s < ™) +2(1 = r**/7) 72 (s > ™). (A2)

Using this and evaluating the integrals in (2) gives p*(V*, U,)=2/(2—log p) for all 1€ [0, **].
Thus, from Theorem 1, e¥*=2/(2—log p) and V* is the maximin test.
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The expression (5) for W* may be derived in two different ways. One is to treat the weight
function for V, as a Riemann sum and find the integral to which it converges. Alternatively,
noting that max (k) —min (k) >0 as k>0, one may anticipate that p(V*, U,) will be constant
over t€[0, t**] and solve the differential equation (d/dt)p(V*, U,)=0. For =1, this reduces,
using (2), to W (t)=(WQ)—W(1))/{2(1 - 1)} for t€[0, **], where W(r) is the integral of W
over [0, /]. This is easily solved to yield (A2).
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